

## Series HMJ/2

SET-2

# कोड नं. 55/2/2

| रोल नं.  |  |  |  |  |
|----------|--|--|--|--|
| Roll No. |  |  |  |  |

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

|       | नोट                                                                                                                                                                                                                                                               |       | NOTE                                                                                                                                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (I)   | कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित<br>पृष्ठ <b>19</b> हैं ।                                                                                                                                                                                          | (I)   | Please check that this question paper contains 19 printed pages.                                                                                                                                                                                                      |
| (II)  | प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड<br>नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर<br>लिखें।                                                                                                                                                            | (II)  | Code number given on the right<br>hand side of the question paper<br>should be written on the title page of<br>the answer-book by the candidate.                                                                                                                      |
| (III) | कृपया जाँच कर लें कि इस प्रश्न-पत्र में<br>37 प्रश्न हैं।                                                                                                                                                                                                         | (III) | Please check that this question paper contains <b>37</b> questions.                                                                                                                                                                                                   |
| (IV)  | कृपया प्रश्न का उत्तर लिखना शुरू करने से<br>पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक<br>अवश्य लिखें।                                                                                                                                                            | (IV)  | Please write down the Serial<br>Number of the question in the<br>answer-book before attempting it.                                                                                                                                                                    |
| (V)   | इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का<br>समय दिया गया है । प्रश्न-पत्र का वितरण<br>पूर्वाह्न में 10.15 बजे किया जाएगा ।<br>10.15 बजे से 10.30 बजे तक छात्र केवल<br>प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान<br>वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे। | (V)   | 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. |



# भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

### सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र को **चार** खण्डों में विभाजित किया गया है **क, ख, ग** और **घ**।
- (ii) इस प्रश्न-पत्र में **37** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (iii) खण्ड क प्रश्न संख्या 1 से 20 तक अति लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** प्रश्न संख्या 21 से 27 तक लघू उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है ।
- (v) खण्ड ग प्रश्न संख्या 28 से 34 तक दीर्घ उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ** प्रश्न संख्या **35** से **37** तक भी दीर्घ-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न **5** अंकों का
- (vii) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के **दो** प्रश्नों में, दो-दो अंकों वाले **दो** प्रश्नों में, तीन-तीन अंकों वाले **एक** प्रश्न में तथा पाँच-पाँच अंकों के **तीनों** प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
- (viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (ix) कैल्कुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति **नहीं** है।
- (x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c=3\times10^8$$
 m/s 
$$h=6.63\times10^{-34}~Js$$
 
$$e=1.6\times10^{-19}~C$$
 
$$\mu_0=4\pi\times10^{-7}~T~m~A^{-1}$$
 
$$\epsilon_0=8.854\times10^{-12}~C^2~N^{-1}~m^{-2}$$
 
$$\frac{1}{4\pi\epsilon_0}=9\times10^9~N~m^2~C^{-2}$$
 इलेक्ट्रॉन का द्रव्यमान  $(m_e)=9.1\times10^{-31}~kg$  प्रोटॉन का द्रव्यमान  $=1.675\times10^{-27}~kg$  प्रोटॉन का द्रव्यमान  $=1.673\times10^{-27}~kg$  आवोगाद्रो संख्या  $=6.023\times10^{23}~y$ ित ग्राम मोल बोल्ट्ज़मान नियतांक  $=1.38\times10^{-23}~JK^{-1}$ 



#### General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises four Sections A, B, C and D.
- (ii) There are **37** questions in the question paper. **All** questions are compulsory.
- (iii) Section A Questions no. 1 to 20 are very short answer type questions, carrying 1 mark each.
- (iv) **Section B** Questions no. **21** to **27** are short answer type questions, carrying **2** marks each.
- (v) **Section C** Questions no. **28** to **34** are long answer type questions, carrying **3** marks each.
- (vi) **Section D** Questions no. **35** to **37** are also long answer type questions, carrying **5** marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of 1 mark, 2 questions of 2 marks, 1 question of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
- (viii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is **not** permitted.
- (x) You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m<sub>e</sub>) =  $9.1 \times 10^{-31}$  kg

Mass of neutron =  $1.675 \times 10^{-27}$  kg

Mass of proton =  $1.673 \times 10^{-27}$  kg

Avogadro's number =  $6.023 \times 10^{23}$  per gram mole

Boltzmann constant =  $1.38 \times 10^{-23} \, \text{JK}^{-1}$ 



#### खण्ड क

नोट: नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प चुनिए :

| 1.        | किसी '  | दिए गए चालक की प्रतिरोधकता, निम्नलिखित में से किस पर निर्भर करती है ?           | 1 |
|-----------|---------|---------------------------------------------------------------------------------|---|
|           | (A)     | ताप                                                                             |   |
|           | (B)     | चालक की लम्बाई                                                                  |   |
|           | (C)     | अनुप्रस्थ-काट का क्षेत्रफल                                                      |   |
|           | (D)     | चालक की आकृति                                                                   |   |
| 2.        | धारा घ  | नत्व और विद्युत्-क्षेत्र के अनुपात को कहते हैं                                  | 1 |
|           | (A)     | प्रतिरोधकता                                                                     |   |
|           | (B)     | चालकता                                                                          |   |
|           | (C)     | अपवाह वेग                                                                       |   |
|           | (D)     | गतिशीलता                                                                        |   |
| 3.        | β- क्षय | ा में                                                                           | 1 |
|           | (A)     | न्यूट्रॉन ऐन्टिन्यूट्रीनो उत्सर्जित करके प्रोटॉन में परिवर्तित हो जाता है।      |   |
|           | (B)     | न्यूट्रॉन न्यूट्रीनो उत्सर्जित करके प्रोटॉन में परिवर्तित हो जाता है।           |   |
|           | (C)     | प्रोटॉन ऐन्टिन्यूट्रीनो उत्सर्जित करके न्यूट्रॉन में परिवर्तित हो जाता है।      |   |
|           | (D)     | प्रोटॉन न्यूट्रीनो उत्सर्जित करके न्यूट्रॉन में परिवर्तित हो जाता है।           |   |
| 4.        | निम्नलि | ाखित पदार्थों में से कौन-सा स्थायी चुम्बक बनाने के लिए उपयुक्त <i>नहीं</i> है ? | 1 |
|           | (A)     | स्टील                                                                           |   |
|           | (B)     | टाइकोनल                                                                         |   |
|           | (C)     | लैड                                                                             |   |
|           | (D)     | ऐिंनको                                                                          |   |
| <b>5.</b> |         | करने वाला व्यक्ति विशेष प्रकार के काँच के चश्मे का उपयोग अपने नेत्रों को        |   |
|           | निम्नलि | ाखित में से किसके हानिकर प्रभाव से बचाने के लिए करता है ?                       | 1 |
|           | (A)     | अति तीव्र दृश्य प्रकाश                                                          |   |
|           | (B)     | अवरक्त विकिरण                                                                   |   |
|           | (C)     | पराबैंगनी किरणें                                                                |   |
|           | (D)     | सूक्ष्म तरंगें                                                                  |   |



### **SECTION A**

**Note:** Select the most appropriate option from those given below each question:

| 1.        | Resi | stivity of a given conductor depends upon                                            | 1 |  |  |  |
|-----------|------|--------------------------------------------------------------------------------------|---|--|--|--|
|           | (A)  | temperature.                                                                         |   |  |  |  |
|           | (B)  | length of conductor.                                                                 |   |  |  |  |
|           | (C)  | area of cross-section.                                                               |   |  |  |  |
|           | (D)  | shape of the conductor.                                                              |   |  |  |  |
| 2.        | The  | The ratio of current density and electric field is called                            |   |  |  |  |
|           | (A)  | Resistivity                                                                          |   |  |  |  |
|           | (B)  | Conductivity                                                                         |   |  |  |  |
|           | (C)  | Drift velocity                                                                       |   |  |  |  |
|           | (D)  | Mobility                                                                             |   |  |  |  |
| 3.        | In β | decay, a                                                                             | 1 |  |  |  |
|           | (A)  | neutron converts into a proton emitting antineutrino.                                |   |  |  |  |
|           | (B)  | neutron converts into a proton emitting neutrino.                                    |   |  |  |  |
|           | (C)  | proton converts into a neutron emitting antineutrino.                                |   |  |  |  |
|           | (D)  | proton converts into a neutron emitting neutrino.                                    |   |  |  |  |
| 4.        | The  | material which is <i>not</i> suitable for making a permanent magnet is               | 1 |  |  |  |
|           | (A)  | Steel                                                                                |   |  |  |  |
|           | (B)  | Ticonal                                                                              |   |  |  |  |
|           | (C)  | Lead                                                                                 |   |  |  |  |
|           | (D)  | Alnico                                                                               |   |  |  |  |
| <b>5.</b> |      | A welder wears special glasses to protect his eyes mostly from the harmful effect of |   |  |  |  |
|           | (A)  | very intense visible light.                                                          |   |  |  |  |
|           | (B)  | infrared radiation.                                                                  |   |  |  |  |
|           | (C)  | ultraviolet rays.                                                                    |   |  |  |  |
|           | (D)  | microwaves.                                                                          |   |  |  |  |



| 6.    | किसी n-प्रकार के अर्धचालक में दाता ऊर्जा स्तर स्थिर होता है  (A) ऊर्जा अन्तराल के केन्द्र पर ।  (B) चालन बैण्ड के ठीक नीचे ।  (C) संयोजकता बैण्ड के ठीक ऊपर ।  (D) चालन बैण्ड में ।                                                                                                      | 1 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 7.    | जब दो नाभिक (A ≤ 10) एक-दूसरे के साथ संगलित होकर एक भारी नाभिक बनाते हैं, तो (A) बंधन ऊर्जा प्रति न्यूक्लिऑन में वृद्धि होती है । (B) बंधन ऊर्जा प्रति न्यूक्लिऑन में कमी होती है । (C) बंधन ऊर्जा प्रति न्यूक्लिऑन में कोई परिवर्तन नहीं होता । (D) कुल बंधन ऊर्जा घट जाती है ।         | 1 |
| 8.    | औषध (चिकित्सा) में निदान के साधन के रूप में उपयोग होने वाली विद्युत्-चुम्बकीय तरंगें हैं         (A) X-िकरणें ।         (B) पराबैंगनी किरणें ।         (C) अवरक्त किरणें ।         (D) पराश्रव्य तरंगें ।                                                                                | 1 |
| 9.    | साम्य में किसी p-n संधि डायोड में नेट धारा होती है  (A) बहुसंख्यक आवेश वाहकों के विसरण के कारण ।  (B) अल्पांश आवेश वाहकों के अपवाह के कारण ।  (C) शून्य क्योंकि विसरण और अपवाह धाराएँ समान और विपरीत होती हैं ।  (D) शून्य क्योंकि आवेश वाहकों में कोई भी संधि को पार नहीं कर पाते हैं । | 1 |
| 10.   | किसी इलेक्ट्रॉन को विराम से किसी ऐसे क्षेत्र में मुक्त किया गया है जहाँ एकसमान विद्युत् और चुम्बकीय क्षेत्र एक-दूसरे के समान्तर कार्यरत हैं। यह इलेक्ट्रॉन  (A) किसी सरल रेखा में गित करेगा।  (B) किसी वृत्त में गित करेगा।  (C) स्थिर रहेगा।  (D) सिर्णिलाकार पथ में गित करेगा।         | 1 |
| नोट : | उपयुक्त उत्तर से रिक्त स्थानों की पूर्ति कीजिए :                                                                                                                                                                                                                                         |   |
| 11.   | आरेख में दर्शाए गए गोलीय पृष्ठ से गुज़रने वाला विद्युत् फ्लक्स है ।                                                                                                                                                                                                                      | 1 |



| 6.    | In an n-type semiconductor, the donor energy level lies |                                                                                                                                  |   |  |  |  |
|-------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|       | (A)                                                     | at the centre of the energy gap.                                                                                                 |   |  |  |  |
|       | (B)                                                     | just below the conduction band.                                                                                                  |   |  |  |  |
|       | (C)                                                     | just above the valance band.                                                                                                     |   |  |  |  |
|       | (D)                                                     | in the conduction band.                                                                                                          |   |  |  |  |
| 7.    | Whe                                                     | n two nuclei (A $\leq$ 10) fuse together to form a heavier nucleus, the                                                          | 1 |  |  |  |
|       | (A)                                                     | binding energy per nucleon increases.                                                                                            |   |  |  |  |
|       | (B)                                                     | binding energy per nucleon decreases.                                                                                            |   |  |  |  |
|       | (C)                                                     | binding energy per nucleon does not change.                                                                                      |   |  |  |  |
|       | (D)                                                     | total binding energy decreases.                                                                                                  |   |  |  |  |
| 8.    | Elec                                                    | tromagnetic waves used as a diagnostic tool in medicine are                                                                      | 1 |  |  |  |
|       | (A)                                                     | X-rays.                                                                                                                          |   |  |  |  |
|       | (B)                                                     | ultraviolet rays.                                                                                                                |   |  |  |  |
|       | (C)                                                     | infrared radiation.                                                                                                              |   |  |  |  |
|       | (D)                                                     | ultrasonic waves.                                                                                                                |   |  |  |  |
| 9.    | At e                                                    | At equilibrium, in a p-n junction diode the net current is                                                                       |   |  |  |  |
|       | (A)                                                     | due to diffusion of majority charge carriers.                                                                                    |   |  |  |  |
|       | (B)                                                     | due to drift of minority charge carriers.                                                                                        |   |  |  |  |
|       | (C)                                                     | zero as diffusion and drift currents are equal and opposite.                                                                     |   |  |  |  |
|       | (D)                                                     | zero as no charge carriers cross the junction.                                                                                   |   |  |  |  |
| 10.   |                                                         | electron is released from rest in a region of uniform electric and netic fields acting parallel to each other. The electron will | 1 |  |  |  |
|       | (A)                                                     | move in a straight line.                                                                                                         |   |  |  |  |
|       | (B)                                                     | move in a circle.                                                                                                                |   |  |  |  |
|       | (C)                                                     | remain stationary.                                                                                                               |   |  |  |  |
|       | (D)                                                     | move in a helical path.                                                                                                          |   |  |  |  |
| Note  | · Fi                                                    | ll in the blanks with appropriate answer :                                                                                       |   |  |  |  |
| 11010 | • 1.0                                                   | it the olumns with appropriate answer.                                                                                           |   |  |  |  |
| 11.   | Elec                                                    | tric flux through a spherical surface shown in the figure, is                                                                    | 1 |  |  |  |
|       |                                                         | $-\mathbf{q}_1$                                                                                                                  |   |  |  |  |
|       |                                                         | $\left(\begin{array}{c} \bullet + a \end{array}\right) \bullet + q_3$                                                            |   |  |  |  |



| <b>12.</b> | लाल, नीले और पीले प्रकाश में से प्रकाश का प्रकीर्णन अधिकतम होता है।                                                                                                                                                                                                                      | 1 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 13.        | किसी संयुक्त सूक्ष्मदर्शी का उपयोग इसलिए किया जाता है क्योंकि किसी वास्तविक सरल<br>सूक्ष्मदर्शी का आवर्धन नहीं होता है।                                                                                                                                                                  | 1 |
| 14.        | किसी पोलेरॉइड से ${ m I_o}$ तीव्रता का अध्रुवित प्रकाश गुज़ारा गया है। प्राप्त समतल ध्रुवित प्रकाश<br>की तीव्रता होगी।                                                                                                                                                                   | 1 |
| 15.        | यंग के द्विझिरी प्रयोग में पर्दे के किसी बिन्दु पर व्यतिकरण करती दो तरंगों के बीच पथान्तर $\frac{5\lambda}{2}$ है, यहाँ $\lambda$ उपयोग किए गए प्रकाश की तरंगदैर्घ्य है। इस बिन्दु पर काली फ्रिंज होगी।                                                                                  | 1 |
|            |                                                                                                                                                                                                                                                                                          |   |
|            | यदि यंग के द्विझिरी प्रयोग में एक झिरी पूर्णत: बन्द हो, तो नए पैटर्न में केन्द्रीय उच्चिष्ठ का कोणीय साइज़ होगा।                                                                                                                                                                         | 1 |
| नोट :      | निम्नलिखित के उत्तर दीजिए :                                                                                                                                                                                                                                                              |   |
| 16.        | प्रकाश-विद्युत् उत्सर्जन में पद 'देहली आवृत्ति' की परिभाषा लिखिए।                                                                                                                                                                                                                        | 1 |
| 17.        | आरेख में दर्शाए अनुसार लम्बाई $l$ की किसी धातु की छड़ $PQ$ को कोणीय वेग $\omega$ से अपने मध्य-बिन्दु $(O)$ से गुज़रने वाले किसी अक्ष के परित:, जो इस पृष्ठ के तल के लम्बवत् है, किसी एकसमान चुम्बकीय क्षेत्र $\overrightarrow{B}$ में घूर्णन कराया गया है। इस छड़ के दो सिरों $P$ और $Q$ |   |
|            | के बीच विकसित विभवान्तर क्या होगा ?                                                                                                                                                                                                                                                      | 1 |
|            | $\times$ $\times$ $\times$ $\times$ $\times$                                                                                                                                                                                                                                             |   |
|            | $\times \times \times \times \times \xrightarrow{\kappa} B \times$                                                                                                                                                                                                                       |   |
|            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   |   |
|            | r' × × × d ×                                                                                                                                                                                                                                                                             |   |
|            |                                                                                                                                                                                                                                                                                          |   |
|            | $\times$ $\times$ $\times$ $\times$                                                                                                                                                                                                                                                      |   |
| 18.        | n Hz आवृत्ति के स्रोत का उपयोग करने पर किसी प्रत्यावर्ती धारा (ac) परिपथ में धारिता C                                                                                                                                                                                                    |   |
|            | के किसी संधारित्र की प्रतिबाधा क्या होती है ?                                                                                                                                                                                                                                            | 1 |
|            | अथवा                                                                                                                                                                                                                                                                                     |   |
|            | किसी श्रेणी अनुनाद LCR परिपथ की प्रतिबाधा का मान क्या होता है ?                                                                                                                                                                                                                          | 1 |

8



| 12.                             | Out of red, blue and yellow lights, the scattering of light is maximum.                                                                                                                                                                                                                                                                                                                    | 1 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 13.                             | A compound microscope is used because a realistic simple microscope does not have magnification.                                                                                                                                                                                                                                                                                           | 1 |
| 14.                             | An unpolarised light of intensity $I_0$ is passed through a polaroid. The intensity of a plane polarised light obtained is                                                                                                                                                                                                                                                                 | 1 |
| 15.                             | In Young's double slit experiment, the path difference between two interfering waves at a point on the screen is $\frac{5  \lambda}{2}$ , $\lambda$ being wavelength of the light used. The dark fringe will lie at this point. OR                                                                                                                                                         | 1 |
|                                 | If one of the slits in Young's double slit experiment is fully closed, the new pattern has central maximum in angular size.                                                                                                                                                                                                                                                                | 1 |
| Note                            | : Answer the following:                                                                                                                                                                                                                                                                                                                                                                    |   |
| 16.                             | Define the term 'threshold frequency' in photoelectric emission.                                                                                                                                                                                                                                                                                                                           | 1 |
| 17.                             | A metallic rod PQ of length $l$ is rotated with an angular velocity $\omega$ about an axis passing through its mid-pint (O) and perpendicular to the plane of the paper, in uniform magnetic field $\overrightarrow{B}$ , as shown in the figure. What is the potential difference developed between the two ends of the rod, P and Q? $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | 1 |
| 18.                             | What is the impedance of a capacitor of capacitance C in an ac circuit using source of frequency n Hz?  OR                                                                                                                                                                                                                                                                                 | 1 |
|                                 | What is the value of impedance of a resonant series LCR circuit?                                                                                                                                                                                                                                                                                                                           | 1 |
| green announcement announcement |                                                                                                                                                                                                                                                                                                                                                                                            |   |

|     | 国の表現                                                                                                                                                                                    |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 19. | दो प्रकाश-सुग्राही पृष्ठों $A$ और $B$ की देहली तरंगदैर्घ्य क्रमश: $\lambda_1$ और $\lambda_2$ हैं । इन दोनों पृष्ठों के कार्यफलनों का अनुपात क्या है ?                                   | 1 |
| 20. | किसी आदर्श प्रेरक से प्रवाहित धारा में परिवर्तन की दर को फलन मानकर उसमें प्रेरित<br>वि.वा.बल (emf) के मान के विचरण को दर्शाने के लिए ग्राफ़ खींचिए।                                     | 1 |
|     | खण्ड ख                                                                                                                                                                                  |   |
| 21. | निम्नलिखित विद्युत्-चुम्बकीय तरंगों में से (a) न्यूनतम तरंगदैर्घ्य, तथा (b) न्यूनतम आवृत्ति किसकी है ? इन दोनों तरंगों में से प्रत्येक का एक उपयोग लिखिए ।                              |   |
|     | अवरक्त तरंगें, सूक्ष्म तरंगें, γ-किरणें और X-किरणें                                                                                                                                     | 2 |
| 22. | 16 Ω प्रतिरोध का कोई गैल्वेनोमीटर 4 mA धारा होने पर पूर्ण पैमाना विक्षेपण देता है। इस<br>गैल्वेनोमीटर को आप 3 V तक की वोल्टता मापने वाले वोल्टमीटर में किस प्रकार परिवर्तित<br>करेंगे ? | 2 |
| 23. | p-n संधि डायोड के V-I अभिलाक्षणिक खींचिए । स्पष्ट कीजिए कि पश्चिदिशिक<br>बायस के अधीन धारा क्रांतिक वोल्टता तक अनुप्रयुक्त वोल्टता पर लगभग निर्भर क्यों नहीं<br>करती है ।               | 2 |
| 24. | किसी धारावाही चालक में पद आवेश वाहकों की 'गतिशीलता' की परिभाषा लिखिए।<br>विश्रान्ति काल के पदों में गतिशीलता के लिए संबंध प्राप्त कीजिए।                                                | 2 |
|     | अथवा                                                                                                                                                                                    |   |
|     | किसी धारावाही चालक में पद इलेक्ट्रॉनों के 'अपवाह वेग' की परिभाषा लिखिए। धारा घनत्व<br>और इलेक्ट्रॉनों के अपवाह वेग के बीच संबंध प्राप्त कीजिए।                                          | 2 |
| 25. | किसी उभयावतल (समावतल) लेंस की फोकस दूरी उसके पृष्ठों की वक्रता त्रिज्या की $\frac{3}{4}$ गुनी है। लेंस के पदार्थ का अपवर्तनांक ज्ञात कीजिए। किस अवस्था में यह लेंस एक अभिसारी           |   |
|     | लेंस की तरह कार्य करेगा ?                                                                                                                                                               | 2 |
| 26. | (a) किसी रेडियोऐक्टिव पदार्थ के लिए, समय t के फलन के रूप में कुल विघटित<br>द्रव्यमान के विचरण को ग्राफ़ खींचकर दर्शाइए।                                                                 |   |
|     | (b) किसी रेडियोऐक्टिव पदार्थ का आरम्भिक द्रव्यमान $3\cdot 2~{ m mg}$ है । इसकी अर्ध आयु $4~{ m h}$ है । $8~{ m h}$ के पश्चात् शेष बचे रेडियोऐक्टिव पदार्थ का द्रव्यमान ज्ञात कीजिए।     | 2 |



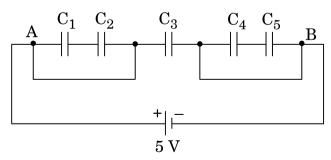
The threshold wavelength for two photosensitive surfaces A and B are  $\lambda_1$ 19. and  $\lambda_2$ , respectively. What is the ratio of the work functions of the two surfaces? 1 Draw the graph showing variation of the value of the induced emf as a 20. function of rate of change of current flowing through an ideal inductor. 1 SECTION B 21. Which of the following electromagnetic waves has (a) minimum wavelength, and (b) minimum frequency? Write one use of each of these two waves. Infrared waves, Microwaves, y-rays and X-rays 2 A galvanometer of resistance 16  $\Omega$  shows full scale deflection for a 22. current of 4 mA. How will you convert it into a voltmeter to measure a voltage up to 3 V? 2 23. Draw V-I characteristics of a p-n junction diode. Explain, why the current under reverse bias is almost independent of the applied voltage up to the critical voltage. 2 Define the term 'mobility' of charge carriers in a current carrying 24. conductor. Obtain the relation for mobility in terms of relaxation time. 2 OR. Define the term 'drift velocity' of electrons in a current carrying conductor. Obtain the relationship between the current density and the drift velocity of electrons. 2 The focal length of an equiconcave lens is  $\frac{3}{4}$  times of radius of curvature 25. of its surfaces. Find the refractive index of the material of the lens. Under what condition will this lens behave as a converging lens? 2 For a radioactive substance, show the variation of the total mass 26. (a) disintegrated as a function of time t graphically. (b) Initial mass of a radioactive substance is 3.2 mg. It has a half-life of 4 h. Find the mass of the substance left undecayed after 8 h. 2



- 27. (a) किसी प्रत्यावर्ती धारा (ac) परिपथ में पद 'अनुनाद की तीक्ष्णता' की व्याख्या कीजिए।
  - (b) किसी श्रेणी LCR परिपथ में,  $V_L = V_C \neq V_R$  है । इस परिपथ के लिए शक्ति गुणांक का मान कितना है ?

#### अथवा

 $V = V_0 \sin \omega t$  वि.वा.बल (emf) का कोई प्रत्यावर्ती धारा (ac) स्रोत धारिता C के किसी संधारित्र से संयोजित है । इसमें प्रवाहित धारा (I) के लिए व्यंजक व्युत्पन्न कीजिए । (i) V और  $\omega t$ , तथा (ii) I और  $\omega t$  के बीच ग्राफ़ खींचिए ।


#### खण्ड ग

- 28. (a) दो विद्युत्-क्षेत्र रेखाएँ एक-दूसरे को नहीं काट सकतीं। साथ ही, ये बन्द पाशों को भी नहीं बना सकतीं। कारण दीजिए।
  - (b)  $1.6~{\rm g}$  द्रव्यमान तथा  $2~{\rm \mu C}$  आवेश का कोई कण  $4~{\rm i}~{\rm ms}^{-1}$  के वेग से गितमान है । समय t=0 पर यह कण  $\stackrel{\longrightarrow}{E}({\rm NC}^{-1}~{\rm i})=80~{\rm i}~+60~{\rm j}$  के किसी विद्युत्-क्षेत्र में प्रवेश करता है ।  $t=5~{\rm s}$  पर इस कण का वेग ज्ञात कीजिए ।

#### अथवा

नीचे दिए गए आरेख में, ज्ञात कीजिए

- (a) नेटवर्क के बिन्दु A और B के बीच तुल्य धारिता । दिया गया है :  $C_1$  =  $C_5$  = 4  $\mu F$ ,  $C_2$  =  $C_3$  =  $C_4$  = 2  $\mu F$ .
- (b) बैटरी द्वारा आपूर्त अधिकतम आवेश, और
- (c) नेटवर्क में संचित कुल ऊर्जा।



- 29. (a) किसी रेडियोऐक्टिव पदार्थ की अर्ध आयु और औसत आयु के बीच विभेदन कीजिए।
  - (b) कोई रेडियोऐक्टिव पदार्थ अपनी माध्य आयु की अवधि के बराबर समय तक क्षयित होता है। इस अवधि के पश्चात् इस पदार्थ का अक्षयित शेष भाग ज्ञात कीजिए।

2

2

3

3



- **27.** (a) Explain the term 'sharpness of resonance' in ac circuit.
  - (b) In a series LCR circuit,  $V_L = V_C \neq V_R$ . What is the value of power factor for this circuit?

OR

An ac source of emf  $V = V_0 \sin \omega t$  is connected to a capacitor of capacitance C. Deduce the expression for the current (I) flowing in it. Plot the graph of (i) V vs.  $\omega t$ , and (ii) I vs.  $\omega t$ .

SECTION C

- **28.** (a) Two electric field lines cannot cross each other. Also, they cannot form closed loops. Give reasons.
  - (b) A particle of charge 2  $\mu$ C and mass 1·6 g is moving with a velocity 4  $\hat{i}$  ms<sup>-1</sup>. At t = 0 the particle enters in a region having an electric field  $\overrightarrow{E}$  (in NC<sup>-1</sup>) = 80  $\hat{i}$  + 60  $\hat{j}$ . Find the velocity of the particle at t = 5 s.

OR

In the figure given below, find the

- (a) equivalent capacitance of the network between points A and B. Given :  $C_1$  =  $C_5$  = 4  $\mu F$ ,  $C_2$  =  $C_3$  =  $C_4$  = 2  $\mu F$ .
- (b) maximum charge supplied by the battery, and
- (c) total energy stored in the network.

- **29.** (a) Differentiate between half-life and average life of a radioactive substance.
  - (b) A radioactive substance decays for an interval of time equal to its mean life. Find the fraction of the amount of the substance which is left undecayed after this time interval.

3

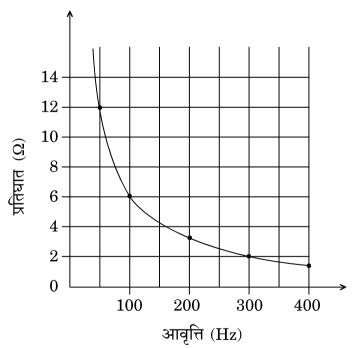
2

2

3

30. किसी खगोलीय दूरदर्शक और किसी संयुक्त सूक्ष्मदर्शी की संरचना में क्या अन्तर होता है ? किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक और नेत्रिका की फोकस दूरियाँ क्रमश: 1·25 cm और 5·0 cm हैं। जब अंतिम प्रतिबिम्ब निकट बिन्दु पर बनता है, तो कोणीय आवर्धन 30 प्राप्त करने के लिए अभिदृश्यक के सापेक्ष बिम्ब की स्थिति ज्ञात कीजिए।

3


31. किसी प्रकाश-सुग्राही पृष्ठ पर आपितत प्रकाश की तरंगदैर्घ्य को  $\lambda_1$  से  $\lambda_2$  करने पर उससे उत्सर्जित प्रकाशिक-इलेक्ट्रॉनों की अधिकतम गितज ऊर्जा दुगुनी हो जाती है ।  $\lambda_1$  और  $\lambda_2$  के पदों में धातु पृष्ठ के लिए देहली तरंगदैर्घ्य और कार्यफलन के लिए व्यंजक व्युत्पन्न कीजिए ।

3

- 32. (a) व्हीटस्टोन सेतु के लिए संतुलन के प्रतिबन्ध व्युत्पन्न कीजिए।
  - (b) किसी मीटर सेतु का परिपथ आरेख यह व्याख्या करने के लिए खींचिए कि मीटर सेतु किस प्रकार व्हीटस्टोन सेतु पर आधारित है।

3

33. आरेख में प्रत्यावर्ती धारा (ac) स्रोत की आवृत्ति के साथ किसी संधारित्र के प्रतिघात में विचरण को ग्राफ़ द्वारा दर्शाया गया है।

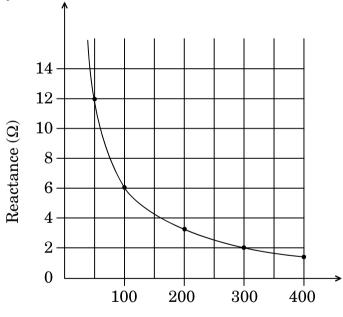


- (a) संधारित्र की धारिता ज्ञात कीजिए।
- (b) किसी आदर्श प्रेरक का 100 Hz आवृत्ति पर प्रतिघात इस संधारित्र की उसी आवृत्ति पर प्रतिघात के समान है। प्रेरक के प्रेरकत्व का मान ज्ञात कीजिए।
- (c) आवृत्ति के साथ इस प्रेरक के प्रतिघात में विचरण को दर्शाने के लिए ग्राफ़ खींचिए।



30. What is the difference in the construction of an astronomical telescope and a compound microscope? The focal lengths of the objective and eyepiece of a compound microscope are 1.25 cm and 5.0 cm, respectively. Find the position of the object relative to the objective in order to obtain an angular magnification of 30 when the final image is formed at the near point.

3


31. The maximum kinetic energy of the photoelectrons emitted is doubled when the wavelength of light incident on the photosensitive surface changes from  $\lambda_1$  to  $\lambda_2$ . Deduce expressions for the threshold wavelength and work function for the metal surface in terms of  $\lambda_1$  and  $\lambda_2$ .

3

- **32.** (a) Derive the condition of balance for Wheatstone bridge.
  - (b) Draw the circuit diagram of a meter bridge to explain how it is based on Wheatstone bridge.

3

**33.** The figure shows the graphical variation of the reactance of a capacitor with frequency of ac source.



Frequency (Hz)

- (a) Find the capacitance of the capacitor.
- (b) An ideal inductor has the same reactance at 100 Hz frequency as the capacitor has at the same frequency. Find the value of inductance of the inductor.
- (c) Draw the graph showing the variation of the reactance of this inductor with frequency.

- **34.** (a) प्रतीप बायस में किसी प्रदीप्त फोटोडायोड की तीन विभिन्न प्रदीप्ति तीव्रताओं  $I_1 > I_2 > I_3$  के लिए V-I अभिलाक्षणिक खींचिए।
  - (b) किसी ज़ेनर नियंत्रित विद्युत् आपूर्ति में, नियंत्रण के लिए किसी  $V_z=6~V$  वाले ज़ेनर डायोड का उपयोग किया गया है । 10~V के अनियंत्रित निवेश पर ज़ेनर धारा लोड धारा की पाँच गुनी है तथा लोड धारा का मान  $4\cdot0~\text{mA}$  होना चाहिए । इस विद्युत् आपूर्ति में उपयोग होने वाले श्रेणी प्रतिरोधक  $R_s$  का मान ज्ञात कीजिए ।

3

5

5

5

#### खण्ड घ

- 35. (a) त्रिज्या R के किसी वृत्ताकार पाश से धारा I प्रवाहित हो रही है। इस पाश के केन्द्र से इसके अक्ष पर स्थित x दूरी के किसी बिन्दु पर चुम्बकीय क्षेत्र के लिए व्यंजक प्राप्त कीजिए।
  - (b) 2 m लम्बी कोई चालक छड़ किसी क्षैतिज मेज़ पर उत्तर-दक्षिण दिशा में रखी है। इसमें दक्षिण से उत्तर की ओर 5 A धारा प्रवाहित हो रही है। इस छड़ पर कार्यरत चुम्बकीय बल की दिशा और परिमाण ज्ञात कीजिए। यह दिया गया है कि इस स्थान पर पृथ्वी का चुम्बकीय क्षेत्र  $0.6 \times 10^{-4} \text{ T}$  तथा नित कोण  $\frac{\pi}{6}$  है।

#### अथवा

- (a) किसी एकसमान चुम्बकीय क्षेत्र में किसी गैल्वेनोमीटर की धारावाही आयताकार कुण्डली पर कार्यरत विक्षेपक बल-आधूर्ण के लिए व्यंजक प्राप्त कीजिए । चल कुण्डली गैल्वेनोमीटर में अरीय चुम्बकीय क्षेत्र का उपयोग क्यों किया जाता है ?
- (b) किसी साइक्लोट्रॉन, जिसकी डीज़ की त्रिज्या  $40~\rm cm$  है, के द्वारा द्रव्यमान  $1\cdot 6\times 10^{-27}~\rm kg$  और आवेश  $1\cdot 6\times 10^{-19}~\rm C$  के कणों को त्विरत किया गया है। इसमें  $0\cdot 4~\rm T$  के चुम्बकीय क्षेत्र का उपयोग किया गया है। इस त्वरक द्वारा कण-पुंज को दी गयी गतिज ऊर्जा (MeV में) ज्ञात कीजिए।
- 36. (a) किसी उभयोत्तल लेंस के लिए लेंस मेकर सूत्र व्युत्पन्न कीजिए।
  - (b) 10 cm फोकस दूरी के किसी उत्तल लेंस से 12 cm दूरी पर, मुख्य अक्ष पर, कोई बिन्दुकित बिम्ब स्थित है। लेंस के दूसरी ओर 10 cm दूरी पर किसी उत्तल दर्पण को समाक्ष रखा गया है। यदि अंतिम प्रतिबिम्ब बिम्ब के संपाती है, तो किरण आरेख खींचिए और उत्तल दर्पण की फोकस दूरी ज्ञात कीजिए।

#### अथवा

(a) तरंगाग्र किसे कहते हैं ? यह किस प्रकार प्रवर्धन करता है । हाइगेन्स के सिद्धान्त का उपयोग करके किसी पृष्ठ से समतल तरंगाग्र के परावर्तन की व्याख्या तथा परावर्तन के नियमों का सत्यापन कीजिए ।



- **34.** (a) Plot V-I characteristics for an illuminated photodiode under reverse bias for three different illumination intensities  $I_1 > I_2 > I_3$ .
  - (b) In a zener regulated power supply, a zener diode with  $V_z$  = 6 V is used for regulation. The load current should be 4·0 mA and zener current is five times the load current for unregulated input of 10 V. Find the series resistor  $R_s$  used in the power supply.

#### SECTION D

- **35.** (a) A circular loop of radius R carries a current I. Obtain an expression for the magnetic field at a point on its axis at a distance x from its centre.
  - (b) A conducting rod of length 2 m is placed on a horizontal table in north-south direction. It carries a current of 5 A from south to north. Find the direction and magnitude of the magnetic force acting on the rod. Given that the Earth's magnetic field at the place is  $0.6 \times 10^{-4}$  T and angle of dip is  $\frac{\pi}{6}$ .

#### OR

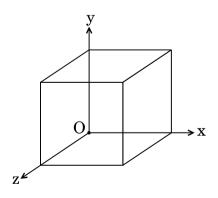
- (a) Obtain the expression for the deflecting torque acting on the current carrying rectangular coil of a galvanometer in a uniform magnetic field. Why is a radial magnetic field employed in the moving coil galvanometer?
- (b) Particles of mass  $1.6 \times 10^{-27}$  kg and charge  $1.6 \times 10^{-19}$  C are accelerated in a cyclotron of dee radius 40 cm. It employs a magnetic field 0.4 T. Find the kinetic energy (in MeV) of the particle beam imparted by the accelerator.
- **36.** (a) Derive lens maker's formula for a biconvex lens.
  - (b) A point object is placed at a distance of 12 cm on the principal axis of a convex lens of focal length 10 cm. A convex mirror is placed coaxially on the other side of the lens at a distance of 10 cm. If the final image coincides with the object, sketch the ray diagram and find the focal length of the convex mirror.

#### $\mathbf{OR}$

(a) What is a wavefront? How does it propagate? Using Huygens' principle, explain reflection of a plane wavefront from a surface and verify the laws of reflection.

3

5


5

- (b) किसी पतली झिरी पर 500 nm तरंगदैर्घ्य का पतला (समान्तर) प्रकाश पुंज आपतन करता है जिसके फलस्वरूप 1 m दूरी पर स्थित पर्दे पर विवर्तन पैटर्न प्राप्त होता है। यदि पहला निम्निष्ठ पर्दे के केन्द्र से 2.5 mm दूरी पर बनता है, तो (i) झिरी की चौड़ाई, और (ii) पर्दे के केन्द्र से पहले द्वितीयक उच्चिष्ठ की दूरी ज्ञात कीजिए।
- 37. (a) यह दर्शाने के लिए गाउस के नियम का उपयोग कीजिए कि त्रिज्या R के एकसमान आवेशित किसी गोलीय खोल के बाहर खोल के केन्द्र से r दूरी पर स्थित किसी बिन्दु पर विद्युत्-क्षेत्र का मान उतना ही होता है, जितना कि केन्द्र पर सम्पूर्ण आवेश को सांद्रित मानकर इसी बिन्दु पर होता । दूरी r के साथ,  $r \le R$  और  $r \ge R$  के लिए, विद्युत्-क्षेत्र के विचरण को दर्शाने के लिए ग्राफ़ भी खींचिए।
  - (b) दो बिन्दु आवेश  $+ 1~\mu C$  और  $+ 4~\mu C$  एक-दूसरे से 30~cm दूरी पर स्थित हैं । इन दोनों आवेशों को मिलाने वाली रेखा पर  $+ 1~\mu C$  आवेश से कितनी दूरी पर नेट विद्युत्-क्षेत्र शून्य होगा ?

#### अथवा

- (a) किसी बाह्य एकसमान विद्युत्-क्षेत्र  $\overrightarrow{E}$  में दो बिन्दु आवेश  $\mathbf{q}_1$  और  $\mathbf{q}_2$  एक-दूसरे से  $\mathbf{r}$  दूरी पर स्थित हैं । आवेशों के इस निकाय को संकलित करने में किया गया कार्य ज्ञात कीजिए ।
- (b) 20 cm भुजा का कोई घन आरेख में दर्शाए अनुसार किसी क्षेत्र में रखा है। इस क्षेत्र में कोई विद्युत्-क्षेत्र  $\stackrel{\longrightarrow}{E}$  इस प्रकार विद्यमान है कि किसी बिन्दु पर विभव को इस प्रकार व्यक्त किया जाता है

V = 10x + 5, जहाँ V वोल्ट में तथा x मीटर में है ।



ज्ञात कीजिए

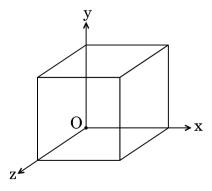
- (i) विद्युत्-क्षेत्र  $\overrightarrow{E}$ , और
- (ii) इस घन से गुज़रने वाला कुल विद्युत् फ्लक्स ।

5

5



(b) A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is obtained on a screen 1 m away. If the first minimum is formed at a distance of 2.5 mm from the centre of the screen, find the (i) width of the slit, and (ii) distance of first secondary maximum from the centre of the screen.


5

5

- 37. (a) Use Gauss's law to show that due to a uniformly charged spherical shell of radius R, the electric field at any point situated outside the shell at a distance r from its centre is equal to the electric field at the same point, when the entire charge on the shell were concentrated at its centre. Also plot the graph showing the variation of electric field with r, for  $r \le R$  and  $r \ge R$ .
  - (b) Two point charges of + 1  $\mu$ C and + 4  $\mu$ C are kept 30 cm apart. How far from the + 1  $\mu$ C charge on the line joining the two charges, will the net electric field be zero?

OR.

- (a) Two point charges  $q_1$  and  $q_2$  are kept r distance apart in a uniform external electric field  $\stackrel{\longrightarrow}{E}$ . Find the amount of work done in assembling this system of charges.
- (b) A cube of side 20 cm is kept in a region as shown in the figure. An electric field  $\stackrel{\rightarrow}{E}$  exists in the region such that the potential at a point is given by V = 10x + 5, where V is in volt and x is in m.



Find the

- (i) electric field  $\overrightarrow{E}$ , and
- (ii) total electric flux through the cube.