

Series HMJ/2

SET-3

कोड नं. 55/2/3

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

	नोट		NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 19 हैं ।	(I)	Please check that this question paper contains 19 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं।	(III)	Please check that this question paper contains 37 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र को **चार** खण्डों में विभाजित किया गया है **क, ख, ग** और **घ** ।
- (ii) इस प्रश्न-पत्र में 37 प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (iii) **खण्ड क** प्रश्न संख्या **1** से **20** तक अति लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न **1** अंक का
- (iv) **खण्ड ख** प्रश्न संख्या 21 से 27 तक लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है ।
- (v) खण्ड ग प्रश्न संख्या 28 से 34 तक दीर्घ-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 35 से 37 तक भी दीर्घ-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
- (vii) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के **दो** प्रश्नों में, दो-दो अंकों वाले **दो** प्रश्नों में, तीन-तीन अंकों वाले **एक** प्रश्न में तथा पाँच-पाँच अंकों के **तीनों** प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
- (viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (ix) कैल्कुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति **नहीं** है ।
- (x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c=3\times10^8$$
 m/s $h=6.63\times10^{-34}$ Js $e=1.6\times10^{-19}$ C $\mu_0=4\pi\times10^{-7}$ T m A^{-1} $\epsilon_0=8.854\times10^{-12}$ C^2 N^{-1} m^{-2} $\frac{1}{4\pi\epsilon_0}=9\times10^9$ N m^2 C^{-2} इलेक्ट्रॉन का द्रव्यमान $(m_e)=9.1\times10^{-31}$ kg प्रोटॉन का द्रव्यमान $=1.675\times10^{-27}$ kg आवोगाद्रो संख्या $=6.023\times10^{23}$ प्रति ग्राम मोल बोल्ट्ज़मान नियतांक $=1.38\times10^{-23}$ JK $^{-1}$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises four Sections A, B, C and D.
- (ii) There are **37** questions in the question paper. **All** questions are compulsory.
- (iii) Section A Questions no. 1 to 20 are very short answer type questions, carrying 1 mark each.
- (iv) **Section B** Questions no. **21** to **27** are short answer type questions, carrying **2** marks each.
- (v) **Section C** Questions no. **28** to **34** are long answer type questions, carrying **3** marks each.
- (vi) **Section D** Questions no. **35** to **37** are also long answer type questions, carrying **5** marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of 1 mark, 2 questions of 2 marks, 1 question of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
- (viii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is **not** permitted.
- (x) You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \text{JK}^{-1}$

खण्ड क

नोट: नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प चुनिए :

.55/2/3

1.		चालक पर अनुप्रयुक्त किसी नियत विभवान्तर के लिए मुक्त इलेक्ट्रॉनों की अपवाह निम्नलिखित में से किस पर निर्भर <i>नहीं</i> करती है ?	1
	(A)	चालक में मुक्त इलेक्ट्रॉन घनत्व	
	(B)	इलेक्ट्रॉनों का द्रव्यमान	
	(C)	चालक की लम्बाई	
	(D)	चालक का ताप	
2.	निम्नि	लेखित में से ओम के नियम का पालन किसके द्वारा किया जाता है ?	1
	(A)	बाह्य अर्धचालकों द्वारा	
	(B)	नैज अर्धचालकों द्वारा	
	(C)	निम्न ताप पर धातुओं द्वारा	
	(D)	उच्च ताप पर धातुओं द्वारा	
3.	औषध (A) (B) (C)	(चिकित्सा) में निदान के साधन के रूप में उपयोग होने वाली विद्युत्-चुम्बकीय तरंगें हैं X-किरणें । पराबैंगनी किरणें । अवरक्त किरणें ।	1
	(D)	पराश्रव्य तरंगें।	
4.		धारावाही सीधे चालक को किसी एकसमान चुम्बकीय क्षेत्र में रखा गया है। इस चालक ते एकांक लम्बाई पर कार्यरत बल तब	1
	(A)	अधिकतम होगा जब चालक चुम्बकीय क्षेत्र की दिशा के लम्बवत् है ।	
	(B)	अधिकतम होगा जब चालक चुम्बकीय क्षेत्र की दिशा के अनुदिश है।	
	(C)	निम्नतम होगा जब चालक चुम्बकीय क्षेत्र की दिशा के लम्बवत् है ।	
	(D)	निम्नतम होगा जब चालक चुम्बकीय क्षेत्र की दिशा से 45° का कोण बनाता है।	
5.		गतिशील समतल विद्युत्-चुम्बकीय तरंग में, निम्नलिखित में से किनका औसत मान	
	शून्य ह	होता है ?	1
	(A)	चुम्बकीय ऊर्जा और विद्युत् ऊर्जा	
	(B)	चुम्बकीय क्षेत्र और विद्युत् क्षेत्र	
	(C)	चुम्बकीय ऊर्जा और चुम्बकीय क्षेत्र	
	(D)	विद्युत् ऊर्जा और विद्युत् क्षेत्र	

SECTION A

Note: Select the most appropriate option from those given below each question:

For a fixed potential difference applied across a conductor, the drift speed 1. of free electrons does *not* depend upon 1 (A) free electron density in the conductor. (B) mass of the electrons. length of the conductor. (C) temperature of the conductor. (D) 2. Ohm's law is obeyed by 1 extrinsic semiconductors. (A) (B) intrinsic semiconductors. (C) metals at low temperature. (D) metals at high temperature. 3. Electromagnetic waves used as a diagnostic tool in medicine are 1 (A) X-rays. ultraviolet rays. (B) (C) infrared radiation. ultrasonic waves. **(D)** A straight current carrying conductor is placed inside a uniform magnetic 4. field. The force per unit length acting on the conductor is 1 maximum when the conductor is perpendicular to the direction of (A) magnetic field. maximum when the conductor is along the direction of magnetic (B) minimum when the conductor is perpendicular to the direction of (C) magnetic field. (D) minimum when the conductor makes an angle of 45° with the direction of magnetic field. In a travelling plane electromagnetic wave, which of the following have 5. zero average value? 1 (A) Magnetic energy and electric energy Magnetic field and electric field (B) Magnetic energy and magnetic field (C) Electric energy and electric field (**D**)

6.	β_ क्ष	य में	1
	(A)	न्यूट्रॉन ऐन्टिन्यूट्रीनो उत्सर्जित करके प्रोटॉन में परिवर्तित हो जाता है।	
	(B)	न्यूट्रॉन न्यूट्रीनो उत्सर्जित करके प्रोटॉन में परिवर्तित हो जाता है।	
	(C)	प्रोटॉन ऐन्टिन्यूट्रीनो उत्सर्जित करके न्यूट्रॉन में परिवर्तित हो जाता है।	
	(D)	प्रोटॉन न्यूट्रीनो उत्सर्जित करके न्यूट्रॉन में परिवर्तित हो जाता है।	
7.		इलेक्ट्रॉन को विराम से किसी ऐसे क्षेत्र में मुक्त किया गया है जहाँ एकसमान विद्युत् और	_
	_	जेय क्षेत्र एक-दूसरे के समान्तर कार्यरत हैं । यह इलेक्ट्रॉन	1
	(A)	किसी सरल रेखा में गति करेगा।	
	(B)	किसी वृत्त में गति करेगा ।	
	(C)	स्थिर रहेगा ।	
	(D)	सर्पिलाकार पथ में गति करेगा ।	
8.	साम्य	में किसी p-n संधि डायोड में नेट धारा होती है	1
	(A)	बहुसंख्यक आवेश वाहकों के विसरण के कारण।	
	(B)	अल्पांश आवेश वाहकों के अपवाह के कारण।	
	(C)	शून्य क्योंकि विसरण और अपवाह धाराएँ समान और विपरीत होती हैं।	
	(D)	शून्य क्योंकि आवेश वाहकों में कोई भी संधि को पार नहीं कर पाते हैं।	
9.	किसी	n-प्रकार के अर्धचालक में दाता ऊर्जा स्तर स्थिर होता है	1
	(A)	ऊर्जा अन्तराल के केन्द्र पर ।	
	(B)	चालन बैण्ड के ठीक नीचे ।	
	(C)	संयोजकता बैण्ड के ठीक ऊपर ।	
	(D)	चालन बैण्ड में ।	
10.	जब दो	ा नाभिक (A ≤ 10) एक-दूसरे के साथ संगलित होकर एक भारी नाभिक बनाते हैं, तो	1
	(A)	बंधन ऊर्जा प्रति न्यूक्लिऑन में वृद्धि होती है ।	
	(B)	बंधन ऊर्जा प्रति न्यूक्लिऑन में कमी होती है ।	
	(C)	बंधन ऊर्जा प्रति न्यूक्लिऑन में कोई परिवर्तन नहीं होता ।	
		कुल बंधन ऊर्जा घट जाती है।	
नोट :	उपयुक्त	उत्तर से रिक्त स्थानों की पूर्ति कीजिए :	
11.	निर्वात	में किन्हीं दो बिन्दुओं के बीच विभवान्तर V_o है। यदि निर्वात को परावैद्युतांक K के	
11.		। से प्रतिस्थापित कर दिया जाए, तो नए विभवान्तर का मान $_$ होगा।	1
12.	_	त प्रकाश विरल माध्यम से सघन माध्यम में गमन करता है। यदि परावर्तित और	
		र्तेत किरणें एक-दूसरे के लम्बवत् हैं, तो परावर्तित प्रकाश आपतन के तल के	
	राखक	त: ध्रुवित होता है ।	1

.55/2/3

6.	In β^-	decay, a	1			
	(A)	neutron converts into a proton emitting antineutrino.				
	(B)	neutron converts into a proton emitting neutrino.				
	(C)	proton converts into a neutron emitting antineutrino.				
	(D)	proton converts into a neutron emitting neutrino.				
7.		lectron is released from rest in a region of uniform electric and etic fields acting parallel to each other. The electron will	1			
	(A)	move in a straight line.				
	(B)	move in a circle.				
	(C)	remain stationary.				
	(D)	move in a helical path.				
8.	At eq	uilibrium, in a p-n junction diode the net current is	1			
	(A)	due to diffusion of majority charge carriers.				
	(B)	due to drift of minority charge carriers.				
	(C)	zero as diffusion and drift currents are equal and opposite.				
	(D)	zero as no charge carriers cross the junction.				
9.	In an n-type semiconductor, the donor energy level lies					
	(A)	at the centre of the energy gap.				
	(B)	just below the conduction band.				
	(C)	just above the valance band.				
	(D)	in the conduction band.				
10.	When	two nuclei $(A \le 10)$ fuse together to form a heavier nucleus, the	1			
	(A)	binding energy per nucleon increases.				
	(B)	binding energy per nucleon decreases.				
	(C)	binding energy per nucleon does not change.				
	(D)	total binding energy decreases.				
Note	: Fil	$l\ in\ the\ blanks\ with\ appropriate\ answer:$				
11.	The p	otential difference between two points in vacuum is V_0 . If vacuum is				
	replac	ced by a medium of dielectric constant K, the new value of potential ence will be	1			
12.	reflec	larised light passes from a rarer into a denser medium. If the ted and the refracted rays are mutually perpendicular, the reflected is linearly polarised to the plane of incidence.	1			
	U					

.55/2/3

7

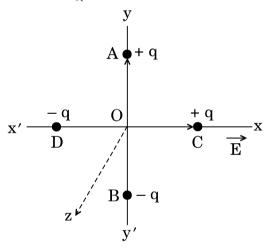
P.T.O.

13.	बिम्ब और अभिदृश्यक लेंस के बीच वायु के स्थान पर उच्चतर अपवर्तनांक के किसी माध्यम (तेल) का उपयोग करके, किसी संयुक्त सूक्ष्मदर्शी की विभेदन क्षमता में की जा सकती है।	1
14.	यंग के द्विझिरी प्रयोग में पर्दे के किसी बिन्दु पर व्यतिकरण करती दो तरंगों के बीच पथान्तर $\frac{5\lambda}{2}$ है, यहाँ λ उपयोग किए गए प्रकाश की तरंगदैर्घ्य है । इस बिन्दु पर काली फ्रिंज होगी । अथवा	1
	यदि यंग के द्विझिरी प्रयोग में एक झिरी पूर्णतः बन्द हो, तो नए पैटर्न में केन्द्रीय उच्चिष्ठ का कोणीय साइज़ होगा।	1
15.	सूर्यास्त अथवा सूर्योदय के समय सूर्य से हमारे नेत्रों में वर्ण का प्रकीर्णित प्रकाश पहुँचता है।	1
नोट :	निम्नलिखित के उत्तर दीजिए :	
16.	प्रकाश-विद्युत् उत्सर्जन में पद 'देहली आवृत्ति' की परिभाषा लिखिए ।	1
17.	आरेख में दर्शाए अनुसार लम्बाई l की किसी धातु की छड़ PQ को, किसी चुम्बकीय क्षेत्र \overrightarrow{B} में, कोणीय वेग ω से अपने मध्य-बिन्दु (O) से गुज़रने वाले किसी अक्ष के परितः, जो इस पृष्ठ के तल के लम्बवत् है, घूर्णित किया गया है । इस छड़ के बिन्दु O और Q के बीच विकसित विभवान्तर क्या होगा ? $\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	× × × × ×	
18.	n Hz आवृत्ति के स्रोत का उपयोग करने पर किसी प्रत्यावर्ती धारा (ac) परिपथ में धारिता C के किसी संधारित्र की प्रतिबाधा क्या होती है ?	1
	अथवा	
	किसी श्रेणी अनुनाद LCR परिपथ की प्रतिबाधा का मान क्या होता है ?	1
19.	दो प्रकाश-सुग्राही पृष्ठों की देहली आवृत्तियाँ क्रमश: v_1 और v_2 हैं । जब इन दोनों पृष्ठों पर आवृत्ति v का प्रकाश आपतन करता है और प्रकाश इलेक्ट्रॉन उत्सर्जन होता है, तो इन पृष्ठों से उत्सर्जित प्रकाशिक-इलेक्ट्रॉनों के वेगों का अनुपात क्या होगा ?	1

13.	The resolving power of a compound microscope can be by using a medium (oil) of higher refractive index than air between the object and the objective lens.	1
14.	In Young's double slit experiment, the path difference between two	
	interferencing waves at a point on the screen is $\frac{5 \lambda}{2}$, λ being wavelength	
	of the light used. The dark fringe will lie at this point. OR	1
	If one of the slits in Young's double slit experiment is fully closed, the new pattern has central maximum in angular size.	1
15.	At sunset or sunrise, the scattered coloured light from the sun reaches our eyes.	1
Note	: Answer the following:	
16.	Define the term 'threshold frequency' in photoelectric emission.	1
17.	A metallic rod PQ of length l is rotated with an angular velocity ω in a magnetic field \overrightarrow{B} about an axis passing through the mid-point O of the rod and perpendicular to the plane of paper as shown in the figure. What is the potential difference developed between the points O and Q of the rod? $\times \times \times \times \times \xrightarrow{B} \times$	1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
18.	What is the impedance of a capacitor of capacitance C in an ac circuit using source of frequency n Hz ?	1
	OR	
	What is the value of impedance of a resonant series LCR circuit?	1
19.	The threshold frequencies of two photosensitive surfaces are v_1 and v_2 , respectively. What is the ratio of the velocities of the photoelectrons emitted from these surfaces when light of frequency v is incident on them and photoemission occurs?	1

20.	किसी आदर्श प्रेरक से प्रवाहित धारा में परिवर्तन की दर को फलन मानकर उसमें प्रेरित	
	वि.वा.बल (emf) के मान के विचरण को दर्शाने के लिए ग्राफ़ खींचिए।	1
	खण्ड ख	
21.	निम्नलिखित विद्युत्-चुम्बकीय तरंगों में से (a) न्यूनतम तरंगदैर्घ्य, तथा (b) न्यूनतम आवृत्ति किसकी है ? इन दोनों तरंगों में से प्रत्येक का एक उपयोग लिखिए। अवरक्त तरंगें, सूक्ष्म तरंगें, γ-िकरणें और X-िकरणें	2
22.	कोई धारावाही वृत्ताकार पाश जिससे $5~\mathrm{A}$ धारा प्रवाहित हो रही है, अपने केन्द्र पर $\pi~\mathrm{mT}$ का चुम्बकीय क्षेत्र उत्पन्न करता है । इस पाश के चुम्बकीय आघूर्ण का मान ज्ञात कीजिए ।	2
23.	p-n संधि डायोड के V-I अभिलाक्षणिक खींचिए । स्पष्ट कीजिए कि पश्चिदिशिक बायस के अधीन धारा क्रांतिक वोल्टता तक अनुप्रयुक्त वोल्टता पर लगभग निर्भर क्यों नहीं	
	करती है।	2
24.	किसी धारावाही चालक में पद आवेश वाहकों की 'गतिशीलता' की परिभाषा लिखिए। विश्रान्ति काल के पदों में गतिशीलता के लिए संबंध प्राप्त कीजिए। अथवा	2
	किसी धारावाही चालक में पद इलेक्ट्रॉनों के 'अपवाह वेग' की परिभाषा लिखिए। धारा घनत्व और इलेक्ट्रॉनों के अपवाह वेग के बीच संबंध प्राप्त कीजिए।	2
25.	फोकस दूरी $15~\mathrm{cm}$ के किसी उत्तल दर्पण के सामने कोई बिम्ब स्थित है। यह दर्पण बिम्ब की साइज़ का आधा प्रतिबिम्ब बनाता है। (a) बिम्ब की स्थिति, (b) प्रतिबिम्ब की प्रकृति ज्ञात कीजिए, तथा (c) प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए।	2
26.	(a) किसी रेडियोऐक्टिव पदार्थ की सक्रियता का SI मात्रक लिखिए। (b) यदि 15 वर्ष में किसी रेडियोऐक्टिव पदार्थ की सक्रियता घटकर अपने आरम्भिक मान	
	की $rac{1}{8}$ हो जाती है, तो इस पदार्थ की अर्ध आयु ज्ञात कीजिए।	2
27.	(a) किसी प्रत्यवर्ती धारा (ac) परिपथ में पद 'अनुनाद की तीक्ष्णता' की व्याख्या कीजिए । (b) किसी श्रेणी LCR परिपथ में, $V_L = V_C \neq V_R$ है । इस परिपथ के लिए शक्ति गुणांक का मान कितना है ?	2
	अथवा	
	$V = V_0 \sin \omega t$ वि.वा.बल (emf) का कोई प्रत्यवर्ती धारा (ac) स्रोत धारिता C के किसी संधारित्र से संयोजित है । इसमें प्रवाहित धारा (I) के लिए व्यंजक व्युत्पन्न कीजिए । (i) V और ωt तथा (ii) I और ωt , के बीच ग्राफ़ खींचिए ।	2

	■ <i>0887</i>	
20.	Draw the graph showing variation of the value of the induced emf as a function of rate of change of current flowing through an ideal inductor.	1
	SECTION B	
21.	Which of the following electromagnetic waves has (a) minimum wavelength, and (b) minimum frequency? Write one use of each of these two waves.	
	Infrared waves, Microwaves, γ-rays and X-rays	2
22.	A circular loop carrying a current 5 A, produces a magnetic field of π mT, at its centre. Find the value of the magnetic moment of the loop.	2
23.	Draw V-I characteristics of a p-n junction diode. Explain, why the current under reverse bias is almost independent of the applied voltage up to the critical voltage.	2
24.	Define the term 'mobility' of charge carriers in a current carrying conductor. Obtain the relation for mobility in terms of relaxation time. OR	2
	Define the term 'drift velocity' of electrons in a current carrying conductor. Obtain the relationship between the current density and the drift velocity of electrons.	2
25.	An object is placed in front of a convex mirror of focal length 15 cm. It produces an image that is half the size of the object. Find (a) position of the object, (b) nature of the image, and (c) draw the ray diagram of image formation.	
26.	(a) Write the SI unit of activity of a radioactive substance.	
	(b) Find the half-life of a radioactive substance if the activity of the substance drops to $\frac{1}{8}$ of its initial value in 15 years.	2
27.	(a) Explain the term 'sharpness of resonance' in ac circuit.	
	(b) In a series LCR circuit, $V_L = V_C \neq V_R$. What is the value of power factor for this circuit ?	2
	OR	
	An ac source of emf $V = V_0 \sin \omega t$ is connected to a capacitor of capacitance C. Deduce the expression for the current (I) flowing in it. Plot the graph of (i) V vs. ωt , and (ii) I vs. ωt .	2


खण्ड ग

28. 4 μF के किसी संधारित्र को 12 V की बैटरी से आवेशित किया गया है। बैटरी को हटा दिया गया है तथा संधारित्र की पट्टिकाओं के बीच के स्थान को परावैद्युतांक 8 के किसी परावैद्युत पदार्थ (स्लैब) से पूर्णत: भर दिया गया है। (a) संधारित्र में संचित आवेश, (b) संधारित्र की पट्टिकाओं के बीच विभवान्तर, और (c) संधारित्र में संचित ऊर्जा, में होने वाले परिवर्तन ज्ञात कीजिए।

अथवा

दो छोटे सर्वसम विद्युत् द्विध्रुव AB तथा CD जिनमें प्रत्येक का द्विध्रुव आघूर्ण \overrightarrow{p} है, आरेख में दर्शाए अनुसार, x-अक्ष की ओर संकेत करते किसी बाह्य विद्युत्-क्षेत्र \overrightarrow{E} में एक-दूसरे से 90° के कोण पर स्थित हैं । ज्ञात कीजिए

- (a) इस व्यवस्था का द्विध्रव आघूर्ण, और
- (b) इस पर कार्यरत नेट बल-आघूर्ण का परिमाण और दिशा ।

- 29. किसी खगोलीय दूरदर्शक और किसी संयुक्त सूक्ष्मदर्शी की संरचना में क्या अन्तर होता है ? किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक और नेत्रिका की फोकस दूरियाँ क्रमश: 1·25 cm और 5·0 cm हैं। जब अंतिम प्रतिबिम्ब निकट बिन्दु पर बनता है, तो कोणीय आवर्धन 30 प्राप्त करने के लिए अभिदृश्यक के सापेक्ष बिम्ब की स्थिति ज्ञात कीजिए।
- **30.** सौर सेल का क्या कार्य है ? संक्षेप में इसकी कार्यविधि की व्याख्या कीजिए और इसका I-V अभिलाक्षणिक वक्र खींचिए।
- 31. किसी प्रकाश-सुग्राही पृष्ठ पर आपितत प्रकाश की तरंगदैर्घ्य को λ_1 से λ_2 करने पर उससे उत्सर्जित प्रकाशिक-इलेक्ट्रॉनों की अधिकतम गितज ऊर्जा दुगुनी हो जाती है । λ_1 और λ_2 के पदों में धातु पृष्ठ के लिए देहली तरंगदैर्घ्य और कार्यफलन के लिए व्यंजक व्युत्पन्न कीजिए ।

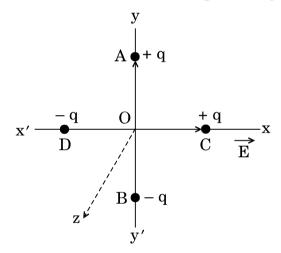
3

3

3

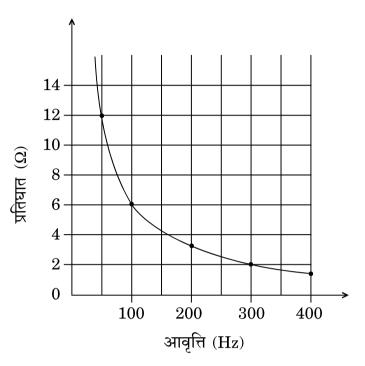
3

SECTION C


28. A capacitor of 4 µF is charged by a battery of 12 V. The battery is disconnected and a dielectric slab of dielectric constant 8 is inserted in between the plates of the capacitor to fill the space completely. Find the change in the (a) charge stored in the capacitor, (b) potential difference between the plates of the capacitor, and (c) energy stored in the capacitor.

3

Two small identical electric dipoles AB and CD, each of dipole moment \overrightarrow{p} are kept at an angle of 90° to each other in an external electric field \overrightarrow{E} pointing along the x-axis as shown in the figure. Find the


- dipole moment of the arrangement, and (a)
- (b) magnitude and direction of the net torque acting on it.

3

- 29. What is the difference in the construction of an astronomical telescope and a compound microscope? The focal lengths of the objective and eyepiece of a compound microscope are 1.25 cm and 5.0 cm, respectively. Find the position of the object relative to the objective in order to obtain an angular magnification of 30 when the final image is formed at the near point.
- 3
- What is the function of a solar cell? Briefly explain its working and draw 30. its I-V characteristic curve.
- 3
- The maximum kinetic energy of the photoelectrons emitted is doubled 31. when the wavelength of light incident on the photosensitive surface changes from λ_1 to λ_2 . Deduce expressions for the threshold wavelength and work function for the metal surface in terms of λ_1 and λ_2 .

32. आरेख में प्रत्यवर्ती धारा (ac) स्रोत की आवृत्ति के साथ किसी संधारित्र के प्रतिघात में विचरण को ग्राफ़ द्वारा दर्शाया गया है।

- (a) संधारित्र की धारिता ज्ञात कीजिए।
- (b) किसी आदर्श प्रेरक का 100 Hz आवृत्ति पर प्रतिघात इस संधारित्र की उसी आवृत्ति पर प्रतिघात के समान है। प्रेरक के प्रेरकत्व का मान ज्ञात कीजिए।
- (c) आवृत्ति के साथ इस प्रेरक के प्रतिघात में विचरण को दर्शाने के लिए ग्राफ़ खींचिए।
- **33.** (a) कक्षा संख्या (n) को फलन मानकर हाइड्रोडन परमाणु में कक्षा की त्रिज्या (r_n) का ग्राफ़ खींचिए।
 - (b) किसी हाइड्रोजन परमाणु में प्रथम उत्तेजित अवस्था और द्वितीय उत्तेजित अवस्था में किसी इलेक्ट्रॉन द्वारा एक परिक्रमण पूरा करने में लगे समय का अनुपात ज्ञात कीजिए।
- 34. (a) व्हीटस्टोन सेतु के लिए संतुलन के प्रतिबन्ध व्युत्पन्न कीजिए।
 - (b) किसी मीटर सेतु का परिपथ आरेख यह व्याख्या करने के लिए खींचिए कि मीटर सेतु किस प्रकार व्हीटस्टोन सेतु पर आधारित है।

3

32. The figure shows the graphical variation of the reactance of a capacitor with frequency of ac source.

- (a) Find the capacitance of the capacitor.
- (b) An ideal inductor has the same reactance at 100 Hz frequency as the capacitor has at the same frequency. Find the value of inductance of the inductor.
- (c) Draw the graph showing the variation of the reactance of this inductor with frequency.
- **33.** (a) Draw the graph of radius of orbit (r_n) in hydrogen atom as a function of orbit number (n).
 - (b) In a hydrogen atom, find the ratio of the time taken by the electron to complete one revolution in the first excited and in the second excited states.
- **34.** (a) Derive the condition of balance for Wheatstone bridge.
 - (b) Draw the circuit diagram of a meter bridge to explain how it is based on Wheatstone bridge.

3

3

खण्ड घ

- 35. (a) किसी उभयोत्तल लेंस के लिए लेंस मेकर सूत्र व्युत्पन्न कीजिए।
 - (b) 10 cm फोकस दूरी के किसी उत्तल लेंस से 12 cm दूरी पर, मुख्य अक्ष पर, कोई बिन्दुिकत बिम्ब स्थित है। लेंस के दूसरी ओर 10 cm दूरी पर किसी उत्तल दर्पण को समाक्ष रखा गया है। यदि अंतिम प्रतिबिम्ब बिम्ब के संपाती है, तो किरण आरेख खींचिए और उत्तल दर्पण की फोकस दूरी ज्ञात कीजिए।

5

5

5

अथवा

- (a) तरंगाग्र किसे कहते हैं ? यह किस प्रकार प्रवर्धन करता है । हाइगेन्स के सिद्धान्त का उपयोग करके किसी पृष्ठ से समतल तरंगाग्र के परावर्तन की व्याख्या तथा परावर्तन के नियमों का सत्यापन कीजिए ।
- (b) किसी पतली झिरी पर 500 nm तरंगदैर्घ्य का पतला (समान्तर) प्रकाश पुंज आपतन करता है जिसके फलस्वरूप 1 m दूरी पर स्थित पर्दे पर विवर्तन पैटर्न प्राप्त होता है। यदि पहला निम्निष्ठ पर्दे के केन्द्र से 2.5 mm दूरी पर बनता है, तो (i) झिरी की चौड़ाई, और (ii) पर्दे के केन्द्र से पहले द्वितीयक उच्चिष्ठ की दूरी ज्ञात कीजिए।
- 36. (a) यह दर्शाने के लिए गाउस के नियम का उपयोग कीजिए कि त्रिज्या R के एकसमान आवेशित किसी गोलीय खोल के बाहर खोल के केन्द्र से r दूरी पर स्थित किसी बिन्दु पर विद्युत्-क्षेत्र का मान उतना ही होता है, जितना कि केन्द्र पर सम्पूर्ण आवेश को सांद्रित मानकर इसी बिन्दु पर होता । दूरी r के साथ, $r \le R$ और $r \ge R$ के लिए, नेट विद्युत्-क्षेत्र के विचरण को दर्शाने के लिए ग्राफ़ भी खींचिए ।
 - (b) दो बिन्दु आवेश $+ 1~\mu C$ और $+ 4~\mu C$ एक-दूसरे से 30~cm दूरी पर स्थित हैं । इन दोनों आवेशों को मिलाने वाली रेखा पर $+ 1~\mu C$ आवेश से कितनी दूरी पर विद्युत्-क्षेत्र शून्य होगा ?

अथवा

(a) किसी बाह्य एकसमान विद्युत्-क्षेत्र \overrightarrow{E} में दो बिन्दु आवेश \mathbf{q}_1 और \mathbf{q}_2 एक-दूसरे से \mathbf{r} दूरी पर स्थित हैं । आवेशों के इस निकाय को संकलित करने में किया गया कार्य ज्ञात कीजिए ।

SECTION D

- **35.** (a) Derive lens maker's formula for a biconvex lens.
 - (b) A point object is placed at a distance of 12 cm on the principal axis of a convex lens of focal length 10 cm. A convex mirror is placed coaxially on the other side of the lens at a distance of 10 cm. If the final image coincides with the object, sketch the ray diagram and find the focal length of the convex mirror.

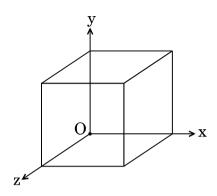
OR

- (a) What is a wavefront? How does it propagate? Using Huygens' principle, explain reflection of a plane wavefront from a surface and verify the laws of reflection.
- (b) A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is obtained on a screen 1 m away. If the first minimum is formed at a distance of 2·5 mm from the centre of the screen, find the (i) width of the slit, and (ii) distance of first secondary maximum from the centre of the screen.

5

5

- 36. (a) Use Gauss's law to show that due to a uniformly charged spherical shell of radius R, the electric field at any point situated outside the shell at a distance r from its centre is equal to the electric field at the same point, when the entire charge on the shell were concentrated at its centre. Also plot the graph showing the variation of electric field with r, for $r \le R$ and $r \ge R$.
 - (b) Two point charges of + 1 μ C and + 4 μ C are kept 30 cm apart. How far from the + 1 μ C charge on the line joining the two charges, will the net electric field be zero?


OR

(a) Two point charges q_1 and q_2 are kept r distance apart in a uniform external electric field \overrightarrow{E} . Find the amount of work done in assembling this system of charges.

.55/2/3

(b) 20 cm भुजा का कोई घन आरेख में दर्शाए अनुसार किसी क्षेत्र में रखा है। इस क्षेत्र \overrightarrow{H} कोई विद्युत्-क्षेत्र \overrightarrow{E} इस प्रकार विद्यमान है कि किसी बिन्दु पर विभव को इस प्रकार व्यक्त किया जाता है

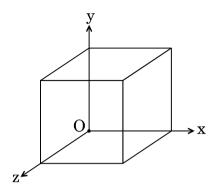
V = 10x + 5, जहाँ V वोल्ट में तथा x मीटर में है ।

ज्ञात कीजिए

- (i) $\overrightarrow{ag}_{\overline{q}}$, \overrightarrow{E} , \overrightarrow{M}
- (ii) इस घन से गुज़रने वाला कुल विद्युत् फ्लक्स ।

37. (a) त्रिज्या R के किसी वृत्ताकार पाश से धारा I प्रवाहित हो रही है। इस पाश के केन्द्र से इसके अक्ष पर स्थित x दूरी के किसी बिन्दु पर चुम्बकीय क्षेत्र के लिए व्यंजक प्राप्त कीजिए।

(b) 2 m लम्बी कोई चालक छड़ किसी क्षैतिज मेज़ पर उत्तर-दक्षिण दिशा में रखी है। इसमें दक्षिण से उत्तर की ओर 5 A धारा प्रवाहित हो रही है। इस छड़ पर कार्यरत चुम्बकीय बल की दिशा और परिमाण ज्ञात कीजिए। यह दिया गया है कि इस स्थान पर पृथ्वी का चुम्बकीय क्षेत्र $0.6 \times 10^{-4} \text{ T}$ तथा नित कोण $\frac{\pi}{6}$ है।


अथवा

- (a) किसी एकसमान चुम्बकीय क्षेत्र में किसी गैल्वेनोमीटर की धारावाही आयताकार कुण्डली पर कार्यरत विक्षेपक बल-आधूर्ण के लिए व्यंजक प्राप्त कीजिए । चल कुण्डली गैल्वेनोमीटर में अरीय चुम्बकीय क्षेत्र का उपयोग क्यों किया जाता है ?
- (b) किसी साइक्लोट्रॉन, जिसकी डीज़ की त्रिज्या $40~\rm cm$ है, के द्वारा द्रव्यमान $1.6 \times 10^{-27}~\rm kg$ और आवेश $1.6 \times 10^{-19}~\rm C$ के कणों को त्विरत किया गया है। इसमें $0.4~\rm T$ के चुम्बकीय क्षेत्र का उपयोग किया गया है। इस त्वरक द्वारा कण-पुंज को दी गयी गतिज ऊर्जा (MeV में) ज्ञात कीजिए।

5

5

(b) A cube of side 20 cm is kept in a region as shown in the figure. An electric field \overrightarrow{E} exists in the region such that the potential at a point is given by V = 10x + 5, where V is in volt and x is in m.

Find the

(i) electric field \overrightarrow{E} , and

(ii) total electric flux through the cube.

37. (a) A circular loop of radius R carries a current I. Obtain an expression for the magnetic field at a point on its axis at a distance x from its centre.

(b) A conducting rod of length 2 m is placed on a horizontal table in north-south direction. It carries a current of 5 A from south to north. Find the direction and magnitude of the magnetic force acting on the rod. Given that the Earth's magnetic field at the place is 0.6×10^{-4} T and angle of dip is $\frac{\pi}{6}$.

OR

- (a) Obtain the expression for the deflecting torque acting on the current carrying rectangular coil of a galvanometer in a uniform magnetic field. Why is a radial magnetic field employed in the moving coil galvanometer?
- (b) Particles of mass 1.6×10^{-27} kg and charge 1.6×10^{-19} C are accelerated in a cyclotron of dee radius 40 cm. It employs a magnetic field 0.4 T. Find the kinetic energy (in MeV) of the particle beam imparted by the accelerator.

5

5